220 research outputs found

    Comments on: Multicriteria Decision Systems for Financial Problems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11750-013-0280-1Pla Santamaría, D.; García Bernabeu, AM. (2013). Comments on: Multicriteria Decision Systems for Financial Problems. TOP. 21(2):275-278. doi:10.1007/s11750-013-0280-1S275278212Arrow KJ (1965) Aspects of the theory of risk-bearingBallestero E (2001) Stochastic goal programming: a mean-variance approach. Eur J Oper Res 131(3):476–481Copeland TE, Weston JF (1988) Financial theory and corporate policy. Addison-Wesley, ReadingDoumpos M, Zopounidis C (2010) A multicriteria decision support system for bank rating. Decis Support Syst 50(1):55–63Doumpos M, Zopounidis C (2011) A multicriteria outranking modeling approach for credit rating. Decis Sci 42(3):721–742Geanakoplos J (2001) Three brief proofs of arrow’s impossibility theorem. Yale Cowles Foundation discussion paper (1123RRR)Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo Stock Market. Manag Sci 37(5):519–531Saaty TL, Ozdemir MS (2003) Why the magic number seven plus or minus two. Math Comput Model 38(3):233–244Sun S, Lu WM et al. (2005) A cross-efficiency profiling for increasing discrimination in data envelopment analysis. Inf Syst Oper Res 43(1):5

    APPROXIMATION OF LIMIT STATE SURFACES IN MONOTONIC MONTE CARLO SETTINGS

    Get PDF
    International audienceThis article investigates the theoretical convergence properties of the estimators produced by a numerical exploration of a monotonic function with multivariate random inputs in a structural reliability framework.The quantity to be estimated is a probability typically associated to an undesirable (unsafe) event and the function is usually implemented as a computer model. The estimators produced by a Monte Carlo numerical design are two subsets of inputs leading to safe and unsafe situations, the measures of which can be traduced as deterministic bounds for the probability. Several situations are considered, when the design is independent, identically distributed or not, or sequential. As a major consequence, a consistent estimator of the (limit state) surface separating the subsets under isotonicity and regularity arguments can be built, and its convergence speed can be exhibited. This estimator is built by aggregating semi-supervized binary classifiers chosen as constrained Support Vector Machines. Numerical experiments conducted on toy examples highlight that they work faster than recently developed monotonic neural networks with comparable predictable power. They are therefore more adapted when the computational time is a key issue

    Binary choice models for external auditors decisions in Asian banks

    Get PDF
    Summarization: The present study investigates the efficiency of four classification techniques, namely discriminant analysis, logit analysis, UTADIS multicriteria decision aid, and nearest neighbours, in the development of classification models that could assist auditors during the examination of Asian commercial banks. To develop the auditing models and examine their classification ability, the dataset is split into two distinct samples. The training sample consists of 1,701 unqualified financial statements and 146 ones that received a qualified opinion over the period 1996–2001. The models are tested in a holdout sample of 527 unqualified financial statements and 52 ones that received a qualified opinion over the period 2002–2004. The results show that the developed auditing models can discriminate between financial statements that should receive qualified opinions from the ones that should receive unqualified opinions with an out-of-sample accuracy around 60%. The highest classification accuracy is achieved by UTADIS, followed by logit analysis, nearest neighbours and discriminant analysis. Both financial variables and the environment in which banks operate appear to be important factors.Presented on: Operational Research, An International Journa

    Operational research and artificial intelligence methods in banking

    Get PDF
    Supplementary materials are available online at https://www.sciencedirect.com/science/article/pii/S037722172200337X?via%3Dihub#sec0031 .Copyright © 2022 The Authors. Banking is a popular topic for empirical and methodological research that applies operational research (OR) and artificial intelligence (AI) methods. This article provides a comprehensive and structured bibliographic survey of OR- and AI-based research devoted to the banking industry over the last decade. The article reviews the main topics of this research, including bank efficiency, risk assessment, bank performance, mergers and acquisitions, banking regulation, customer-related studies, and fintech in the banking industry. The survey results provide comprehensive insights into the contributions of OR and AI methods to banking. Finally, we propose several research directions for future studies that include emerging topics and methods based on the survey results

    Selecting cash management models from a multiobjective perspective

    Full text link
    [EN] This paper addresses the problem of selecting cash management models under different operating conditions from a multiobjective perspective considering not only cost but also risk. A number of models have been proposed to optimize corporate cash management policies. The impact on model performance of different operating conditions becomes an important issue. Here, we provide a range of visual and quantitative tools imported from Receiver Operating Characteristic (ROC) analysis. More precisely, we show the utility of ROC analysis from a triple perspective as a tool for: (1) showing model performance; (2) choosingmodels; and (3) assessing the impact of operating conditions on model performance. We illustrate the selection of cash management models by means of a numerical example.Work partially funded by projects Collectiveware TIN2015-66863-C2-1-R (MINECO/FEDER) and 2014 SGR 118.Salas-Molina, F.; RodrĂ­guez-Aguilar, JA.; DĂ­az-GarcĂ­a, P. (2018). Selecting cash management models from a multiobjective perspective. Annals of Operations Research. 261(1-2):275-288. https://doi.org/10.1007/s10479-017-2634-9S2752882611-2Ballestero, E. (2007). Compromise programming: A utility-based linear-quadratic composite metric from the trade-off between achievement and balanced (non-corner) solutions. European Journal of Operational Research, 182(3), 1369–1382.Ballestero, E., & Romero, C. (1998). Multiple criteria decision making and its applications to economic problems. Berlin: Springer.Bi, J., & Bennett, K. P. (2003). Regression error characteristic curves. In Proceedings of the 20th international conference on machine learning (ICML-03), pp. 43–50.Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.da Costa Moraes, M. B., Nagano, M. S., & Sobreiro, V. A. (2015). Stochastic cash flow management models: A literature review since the 1980s. In Decision models in engineering and management (pp. 11–28). New York: Springer.Doumpos, M., & Zopounidis, C. (2007). Model combination for credit risk assessment: A stacked generalization approach. Annals of Operations Research, 151(1), 289–306.Drummond, C., & Holte, R. C. (2000). Explicitly representing expected cost: An alternative to roc representation. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 98–207). New York: ACM.Drummond, C., & Holte, R. C. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1), 95–130.Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint conference on artificial intelligence (Vol. 17, pp. 973–978). Lawrence Erlbaum associates Ltd.Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874.Flach, P. A. (2003). The geometry of roc space: understanding machine learning metrics through roc isometrics. In Proceedings of the 20th international conference on machine learning (ICML-03), pp. 194–201.Garcia-Bernabeu, A., Benito, A., Bravo, M., & Pla-Santamaria, D. (2016). Photovoltaic power plants: a multicriteria approach to investment decisions and a case study in western spain. Annals of Operations Research, 245(1–2), 163–175.Glasserman, P. (2003). Monte Carlo methods in financial engineering (Vol. 53). New York: Springer.Gregory, G. (1976). Cash flow models: a review. Omega, 4(6), 643–656.HernĂĄndez-Orallo, J. (2013). Roc curves for regression. Pattern Recognition, 46(12), 3395–3411.HernĂĄndez-Orallo, J., Flach, P., & Ferri, C. (2013). Roc curves in cost space. Machine Learning, 93(1), 71–91.HernĂĄndez-Orallo, J., Lachiche, N., & Martınez-UsĂł, A. (2014). Predictive models for multidimensional data when the resolution context changes. In Workshop on learning over multiple contexts at ECML, volume 2014.Metz, C. E. (1978). Basic principles of roc analysis. In Seminars in nuclear medicine (Vol. 8, pp. 283–298). Amsterdam: Elsevier.Miettinen, K. (2012). Nonlinear multiobjective optimization (Vol. 12). Berlin: Springer.Ringuest, J. L. (2012). Multiobjective optimization: Behavioral and computational considerations. Berlin: Springer.Ross, S. A., Westerfield, R., & Jordan, B. D. (2002). Fundamentals of corporate finance (sixth ed.). New York: McGraw-Hill.Salas-Molina, F., Pla-Santamaria, D., & Rodriguez-Aguilar, J. A. (2016). A multi-objective approach to the cash management problem. Annals of Operations Research, pp. 1–15.Srinivasan, V., & Kim, Y. H. (1986). Deterministic cash flow management: State of the art and research directions. Omega, 14(2), 145–166.Steuer, R. E., Qi, Y., & Hirschberger, M. (2007). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297–317.Stone, B. K. (1972). The use of forecasts and smoothing in control limit models for cash management. Financial Management, 1(1), 72.Torgo, L. (2005). Regression error characteristic surfaces. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (pp. 697–702). ACM.Yu, P.-L. (1985). Multiple criteria decision making: concepts, techniques and extensions. New York: Plenum Press.Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw-Hill

    What Is a Decision Problem? Designing Alternatives

    Get PDF
    International audienceThis paper presents a general framework for the design of alternatives in decision problems. The paper addresses both the issue of how to design alternatives within "known decision spaces" and on how to perform the same action within "partially known or unknown decision spaces". The paper aims at providing archetypes for the design of algorithms supporting the generation of alternatives

    Combining machine learning and metaheuristics algorithms for classification method PROAFTN

    Get PDF
    © Crown 2019. The supervised learning classification algorithms are one of the most well known successful techniques for ambient assisted living environments. However the usual supervised learning classification approaches face issues that limit their application especially in dealing with the knowledge interpretation and with very large unbalanced labeled data set. To address these issues fuzzy classification method PROAFTN was proposed. PROAFTN is part of learning algorithms and enables to determine the fuzzy resemblance measures by generalizing the concordance and discordance indexes used in outranking methods. The main goal of this chapter is to show how the combined meta-heuristics with inductive learning techniques can improve performances of the PROAFTN classifier. The improved PROAFTN classifier is described and compared to well known classifiers, in terms of their learning methodology and classification accuracy. Through this chapter we have shown the ability of the metaheuristics when embedded to PROAFTN method to solve efficiency the classification problems
    • 

    corecore